فایل ورد (word) مقاله پيش بيني قيمت سکه طلا در بورس کالاي ايران با رويکرد شبکه عصبي GMDH دارای 33 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد فایل ورد (word) مقاله پيش بيني قيمت سکه طلا در بورس کالاي ايران با رويکرد شبکه عصبي GMDH کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
توجه : در صورت مشاهده بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي فایل ورد (word) مقاله پيش بيني قيمت سکه طلا در بورس کالاي ايران با رويکرد شبکه عصبي GMDH،به هيچ وجه بهم ريختگي وجود ندارد
بخشی از متن فایل ورد (word) مقاله پيش بيني قيمت سکه طلا در بورس کالاي ايران با رويکرد شبکه عصبي GMDH :
تعداد صفحات :33
اقتصاد هر کشور از بخشهای مختلفی تشکیل شده که روابط بین این بخشها، سمت و سوی اقتصاد آن کشور را مشخص میکند. در این بین بازار سرمایه در کنار بازار پول، به عنوان اجزائ تشکیلدهنده بازارهای مالی بوده و در واقع شریانهای اصلی یک اقتصاد محسوب میگردند، که مسائلی نظیر رشد و توسعه اقتصادی منوط به عملکرد آنها در اقتصاد میباشد و چنانچه رابطه منطقی بین بازار مالی با سایر بخشهای اقتصادی وجود نداشته باشد، احتمال بروز اختلالات و نقصانهایی در سازوکار اقتصاد وجود دارد. بازار بورس به عنوان رکن اصلی بازار مالی نقش مهمی را در تسهیل سرمایهگذاریهای شکل گرفته در بازار سرمایه ایفا میکند. هدف اصلی این مطالعه همانگونه که عنوان این تحقیق نیز مبین آن است، پیشبینی قیمت سکه طلا میباشد. لذا ضمن مرور اجمالی بر شناختهشدهترین تئوریهای اقتصادی، به ارائه روش جدیدتری نسبت به سایر روشهای متداول پیش بینی در گذشته پرداخته و با استفاده از مدل شبکه عصبی GMDH، اثر متغیرهای کلان اقتصادی (شامل نرخ ارز دلار، قیمت سکه، قیمت طلا به دلار، قیمت نفت به دلار، شاخص قیمت کل سهام، تاریخ روز تحویل سکه) بر قیمت آتی سکه را الگوسازی و پیشبینی میکنیم. الگوریتم GMDH قابلیت استفاده در موضوعات متنوعی چون کشف روابط، پیشبینی، مدلسازی سیستمها، بهینهسازی وشناخت الگوهای غیرخطی را دارا میباشد. ویژگی خاص این الگوریتم استنتاجی، قابلیت شناسایی و غربالکردن متغیرهای کماثر ورودی در دوره آموزش شبکه و حذف آنها از روند شبیهسازی در دوره آزمون میباشد. بدین ترتیب میتوان با انجام یک فرآیند قیاسی، در چند مرحله تکرار، متغیرهای کماثرتر را حذف نمود و نهایتاً مدل بهینه برای پیشبینی را بر اساس معیارهای متداول خطا نظیر RMSE و MAPE و... بدست آورد. بعلاوه، این الگوریتم قادر به شناسایی و رتبهبندی تأثیرگذارترین متغیرها نیز میباشد.